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Abstract
Bell-type inequalities are used to test local realism against quantum theory. In
this paper, we consider a two-party system with two settings and two possible
outcomes on each side, and derive equalities in local theories which are violated
by quantum theory by a factor of 1.522 tolerating 0.586 fraction of white noise
admixture which is twice that of the previous results.

PACS numbers: 03.65.−w, 03.65.Ta, 03.65.Ud

1. Introduction

The idea of local realism opened its way into quantum theory by the work of Einstein, Podolsky
and Rosen which is well known as EPR paradox [1], though it is not really a paradox, because
it has been argued recently that the assumptions of EPR were wrong [2]. However, it was
left to John S Bell who derived an inequality based on local theories and proved that it was
violated by statistical predictions of quantum theory [3, 4]. Since then many attempts have
been made to derive Bell-type inequalities which are violated by a stronger factor, so that it
can be tested in the real experiments in which errors are inevitable. Among these are Clauser,
Horne, Shimony and Holt inequality, the so-called CHSH inequality [5, 6].

Nowadays, with the growing power of computers, the numerical methods have attracted
attentions for constructing these inequalities as much as possible [7–9] though analytical
approaches are in progress too [10], with the hope that some of which could be violated by a
stronger factor.

In this paper, we first introduce a simple but general method for constructing Bell
expressions which can be applied to two party experiments each measuring two observables
with different outputs. Generalization to more parties and/or more observables is
straightforward. Then in a special case of a two-party system with two settings and two
possible outcomes on each side, we use these expressions and show that according to local
theories there exist equalities which are violated by quantum theory by a stronger factor than
Bell-type inequalities. Meanwhile we derive an inequality in this case which is violated by
a factor of 1.621 tolerating 0.293 fraction of white noise admixture. Although in this case
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the tolerance is the same as those derived previously in the literature, the range of violation is
greater.

2. Derivation of Bell-type expressions

Let us consider a two-party system with no known interaction between its parts. Suppose the
left party, say, A performs two possible measurements a with outcomes i ∈ {0, . . . , m−1} and
a′ with outcomes i ′ ∈ {0, . . . , m′ − 1}. Similarly, the right party, say B, performs two possible
measurements b with outcomes j ∈ {0, . . . , n− 1} and b′ with outcomes j ′ ∈ {0, . . . , n′ − 1}.
For simplicity, from now on we use unprimed/primed variables and indices for the first/second
measurement for each party whenever applicable and label such a system as mn ⊗ m′n′.
As a consequence of locality, for measurements which are not simultaneous, there exists a
probability q

ii ′jj ′
aa′bb′ defined as the probability that measurements of a result i, a′ result i ′, b

result j and b′ result j ′. The total number of q’s, NQ, is NQ = m×m′ × n× n′. As q’s are all
exclusive and cover all probable events, with the assumption that the probability distribution
for each measurement is normalized, we have∑

i,i ′,j,j ′
q

ii ′jj ′
aa′bb′ = 1. (1)

These q’s are the building blocks of all possible Bell expressions for local theories.
If P

ij

ab denotes the probability that in a particular experiment A measures a with outcome
i and B measures b with outcome j , we can write

P
ij

ab =
∑
i ′,j ′

q
ii ′jj ′
aa′bb′ , and so on . . . . (2)

There are totally NP number of P’s, where NP = (m+m′)(n+n′). Equation (2) in matrix
form would become

P = MQ (3)

where P is an NP × 1 column matrix, Q is an NQ × 1 column matrix and M is the conversion
matrix with dimension NP × NQ. These P’s are not all independent. The rank of the matrix
M, denoted by NI , is the number of independent P’s. For 22 ⊗ 22, 23 ⊗ 22 and 23 ⊗ 23, the
rank of the conversion matrix, M, is 9, 12 and 16, respectively. Note that these do not agree
with the results obtained in [11] in which the number of independent P’s for 22 ⊗ 22 case is
predicted to be 8, and for 23 ⊗ 22 case it is 11 (for m = 2,m′ = 3, n = 2 and n′ = 2) or 14
(for m = 2,m′ = 2, n = 2 and n′ = 3) and for 23⊗23 case it is 20 (for m = 2, m′ = 3, n = 2
and n′ = 3) or 19 (for m = 3,m′ = 2, n = 2 and n′ = 3).

To prove these numerical results analytically we search for constraints which justify the
rank of the matrix M. Two groups of constraints are directly derived from equations (1)
and (2).

The first is normalization of probability distribution in a measurement. That is

∑
i,j

P
ij

ab = 1, (4)

∑
i,j ′

P
ij ′
ab′ = 1, (5)

∑
i ′,j

P
i ′j
a′b = 1, (6)
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∑
i ′,j ′

P
i ′j ′
a′b′ = 1. (7)

However, with the assumption of CH (see [6]) we can write

P
ij

abP
i ′j ′
a′b′ = P

i ′j
a′bP

ij ′
ab′ = q

ii ′jj ′
aa′bb′ , (8)

and from equation (1) we have

∑
i,i ′,j,j ′

P
ij

abP
i ′j ′
a′b′ =

∑
i,i ′,j,j ′

q
ii ′jj ′
aa′bb′ = 1, (9)

∑
i,i ′,j,j ′

P
i ′j
a′bP

ij ′
ab′ =

∑
i,i ′,j,j ′

q
ii ′jj ′
aa′bb′ = 1. (10)

So, for instance, equations (4), (5) and (9) can be considered as independent and these
equations impose only three independent constraints on P’s. Note that in this case equation
(10) is automatically satisfied and equation (6) can be derived from equations (5) and (10).
Similarly, equation (7) can be derived from equations (4) and (9).

The second group of constraints derived from equations (1) and (2) are

∑
j

P
ij

ab =
∑
j ′

P
ij ′
ab′ , (11)

∑
j

P
i ′j
a′b =

∑
j ′

P
i ′j ′
a′b′ , (12)

∑
i

P
ij

ab =
∑

i ′
P

i ′j
a′b , (13)

∑
i

P
ij ′
ab′ =

∑
i ′

P
i ′j ′
a′b′ , (14)

which imply no-signalling. The total number of constraints from the above equations add up
to m + m′ + n + n′. However in each group of the above constraints, one of them is a linear
combination of the other, for example from equations (4) and (5), one can write

∑
i,j

P
ij

ab =
∑
i,j ′

P
ij ′
ab′ , (15)

and from equation (11) we have
∑
i �=l,j

P
ij

ab =
∑
i �=l,j ′

P
ij ′
ab′ . (16)

Subtracting equation (16) from equation (15) results in
∑

j

P
lj

ab =
∑
j ′

P
lj ′
ab′ , (17)

which is one of the constraint in equation (11). So, the constraints from no-signalling would
be (m − 1) + (m′ − 1) + (n − 1) + (n′ − 1).

The total number of constraints, NC , given by equations (4)–(14) would become

NC = m + m′ + n + n′ − 1. (18)
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So there are only NI number of independent P’s, where

NI = NP − NC

= (m + m′)(n + n′) − (m + m′ + n + n′ − 1), (19)

which agrees with the numerical results mentioned before and is symmetric with respect
to interchanging m and m′ (and of course n and n′). Clearly, without CH assumption, i.e.
equation (8), we could not get this result. We would like to emphasize that this assumption
is only used here to prove equation (19). It has nothing to do with the rest of this paper,
especially the main results which will be obtained later.

Generally, if B is a Bell expression for local theories and −d � B � c with non-negative
c and d, then B must satisfy

B =
∑
s,t,k,l

λstklP
kl
st

=
∑

i,i ′,j,j ′
(µii ′jj ′ − νii ′jj ′)q

ii ′jj ′
aa′bb′ , µii ′jj ′ �= νii ′jj ′ (20)

where c(d) is the greatest of non-negative real numbers µ’s (ν’s).
We have solved equation (3) numerically for 22 ⊗ 22, 23 ⊗ 22 and 23 ⊗ 23 cases to find

all possible expressions that satisfy equation (20) and the complement of each one, i.e. all pair
of expressions whose sum add up to 1. However, we do not discuss it here because the results
that we are going to use in the next section can be tested directly and easily.

3. Violation of equalities and inequalities

Using the numerical method mentioned in the previous section, we have found two expressions
in 22 ⊗ 22 case which are complement of each other. These are∣∣P 10

11 − P 11
12 + P 11

21 + P 01
22

∣∣ = q0001
1212 + q0011

1212 + q0110
1212 + q0111

1212 + q1000
1212 + q1001

1212 + q1100
1212 + q1110

1212 ,

(21)

and∣∣−P 01
11 + P 00

12 + P 01
21 + P 11

22

∣∣ = q0000
1212 + q0010

1212 + q0100
1212 + q0101

1212 + q1010
1212 + q1011

1212 + q1101
1212 + q1111

1212 .

(22)

Note that all q’s are non-negative numbers. Adding these two equations and then using
equation (1) would give∣∣P 10

11 − P 11
12 + P 11

21 + P 01
22

∣∣ +
∣∣−P 01

11 + P 00
12 + P 01

21 + P 11
22

∣∣ = 1. (23)

See appendix A for a direct proof of equations (21), (22) and the above equality. (Though the
equality (23) can also be derived analytically from equations (4)–(14) easily.) Of course, due
to symmetry, there are other equations of this type as well which we do not mention here for
brevity.

Now we use the same experiment used by CH [6] to show that equality (23) is violated
by quantum theory. Consider a two-photon system in the state

|�0〉 = 1√
2







1
0
0


 ⊗




1
0
0


 +




0
1
0


 ⊗




0
1
0





 (24)

where one photon moves to the left in the +z direction and the other moves to the right in −z

direction. The projection of |�0〉 on directions u(θ) = cos θ i + sin θ j + 0k (for the left photon)
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and v(φ) = cos φi + sin φj + 0k (for the right photon) is

|�(θ, φ)〉=



cos2(θ) cos(θ) sin(θ) 0
cos(θ) sin(θ) sin2(θ) 0

0 0 0


⊗




cos2(φ) cos(φ) sin(φ) 0
cos(φ) sin(φ) sin2(φ) 0

0 0 0


|�0〉.

So,

|�(θ, φ)〉 = 1√
2

cos(θ − φ)




cos θ

sin θ

0


 ⊗




cos φ

sin φ

0


 . (25)

If, for example, the left photon is not detected in the u(θ) direction then it must be detected in
the direction u(θ + π/2) = − sin θ i + cos θ j + 0k which is perpendicular to u(θ). So defining
γ = θ + π/2 and η = φ + π/2, for directions perpendicular to u and v, respectively, we obtain

|�(γ, η)〉 = 1√
2

cos(θ − φ)




−sin θ

cos θ

0


 ⊗




−sin φ

cos φ

0


 , (26)

|�(θ, η)〉 = 1√
2

sin(φ − θ)




−sin θ

cos θ

0


 ⊗




cos φ

sin φ

0


 , (27)

|�(γ, φ)〉 = 1√
2

sin(θ − φ)




cos θ

sin θ

0


 ⊗




−sin φ

cos φ

0


 . (28)

Denoting the photon detection in a particular direction with 1 and the non-detection with 0 the
joint probabilities would be

P 11
11 = 1

2 cos2(θ − φ); P 10
11 = 1

2 sin2(φ − θ);
P 01

11 = 1
2 sin2(θ − φ); P 00

11 = 1
2 cos2(θ − φ);

P 11
12 = 1

2 cos2(θ − φ′); P 10
12 = 1

2 sin2(φ′ − θ);
P 01

12 = 1
2 sin2(θ − φ′); P 00

12 = 1
2 cos2(θ − φ′);

P 11
21 = 1

2 cos2(θ ′ − φ); P 10
21 = 1

2 sin2(φ − θ ′);
P 01

21 = 1
2 sin2(θ ′ − φ); P 00

21 = 1
2 cos2(θ ′ − φ);

P 11
22 = 1

2 cos2(θ ′ − φ′); P 10
22 = 1

2 sin2(φ′ − θ ′);
P 01

22 = 1
2 sin2(θ ′ − φ′); P 00

22 = 1
2 cos2(θ ′ − φ′).

If we represent θ − φ, φ′ − θ and φ − θ ′ by x, y and z, respectively, then θ ′ − φ′, denoted by
w, would be −(x + y + z).

For x = 247.46◦, y = 67.49◦ and z = 157.50◦, the value of the second term on the
left-hand side of equation (23), predicted by quantum theory, is |−1/2 sin2 x + 1/2 cos2 y +
1/2 sin2 z + 1/2 cos2 w| = 0.207 and if quantum theory is local, according to equation (23),
for the first term we must have∣∣P 10

11 − P 11
12 + P 11

21 + P 01
22

∣∣ = 0.793. (29)

However, the value of the left-hand side of the above equality predicted by quantum
theory is |+1/2 sin2 x − 1/2 cos2 y + 1/2 cos2 z + 1/2 sin2 w| = 1.207. Clearly, equality (29)
is violated by quantum theory by a factor of 1.522 which exceeds that of CH results by 0.108.
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In the presence of white noise, the density matrix is

ρ = γρnoise + (1 − γ )ρQM (30)

where ρnoise = (1/4) × 11 and ρQM = |�〉〈�|. Here, γ is the Bell expression’s tolerance of
white noise, i.e., the maximum fraction of white noise admixture for which a Bell expression
stops being violated. The joint probability for the above state is

P ij

ab = γ

4
+ (1 − γ )P

ij

ab, (31)

and it is easily seen that the tolerance of equality (29) is 0.586 fraction of white noise which is
twice that of CH inequality. This is due to the fact that the tolerance is very sensitive to upper
bound which is 1 in CH inequality and 0.793 in our equality.

Also using the method mentioned in section 3 we have obtained three inequalities which
correspond to different values of c and d in equation (20) which can be tested directly too.
One of them, for c = 1 and d = 0, is Clauser–Horne inequality, which reads

0 � +P 10
11 + P 00

12 + P 01
21 − P 00

22 � 1. (32)

The other, for c = 1 and d = 1, is

−1 � +2P 10
11 + P 00

12 − P 10
12 − P 00

21 + P 01
21 − P 00

22 − P 11
22 � 1. (33)

Finally, for c = 2 and d = 1, we found

−1 � −P 00
11 + P 01

11 + P 10
11 + P 00

12 − P 10
12 + P 11

12 + P 01
21 − 2P 11

21 − P 00
22 + 2P 10

22 � 2. (34)

A direct proof of this inequality is shown in appendix B. In terms of x, y, z and w, the
inequalities (32), (33) and (34) would become

0 � 1
2 (sin2 x + cos2 y + sin2 z − cos2 w) � 1, (35)

−1 � sin2 x + 1
2 cos 2y − 1

2 cos 2z − cos2 w) � 1, (36)

−1 � 1
2 + 3

2 (sin2 x − sin2 y − cos2 z + sin2 w) � 2, (37)

respectively.
The value of inequalities (35), (36) and (37) for x = −67.50◦(−3π/8), y =

202.50◦(9π/8) and z = −67.50◦(−3π/8) are +1.207, +1.414 and +2.621, respectively; but
for x = 22.50◦(π/8), y = −67.50◦(−3π/8) and z = 22.50◦(π/8) these are −0.207,−1.414
and −1.621, respectively. While the difference between upper bound and lower bound
for Clauser–Horne inequality is 1.414, in agreement with the result obtained in [6], in
equation (33) the lower bound itself is violated by a factor of 1.414 and the lower bound
of equation (34) is violated by a factor of 1.621 which are greater than that obtained by others
for 22 ⊗ 22 case (see, e.g., [5, 6]). Note that the difference between the upper bound and
the lower bound in the two latter cases is 2.818 and 4.242, respectively, and that the range of
violation for the upper bound for inequalities (32), (33) and (34) is 0.207, 0.414 and 0.621,
respectively. These are the maximum values that we could reach and despite the greater range
of violation inequalities (32), (33) and (34) tolerate 0.293 of white noise which is the same as
CH inequality.

4. Conclusion

In this paper, we have used a numerical method to derive all possible Bell-type inequalities in a
two-party experiment namely mm′ ⊗nn′. The dimension of joint probabilities space obtained
by this method is not in agreement with the results obtained previously in the literature.
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However, we confirmed our numerical results using an analytical method. This was done
by adopting the assumption of CH, i.e. equation (8). And on this basis we showed that
normalization of joint probabilities in a run of experiment and no-signalling in local theories
are implied by equation (1) which is statistically trivial. It is an open question that if any
assumption other than equation (8) could lead to these correct results.

We showed that besides inequalities there are equalities that can be used to test local
theories. In 22 ⊗ 22 case, the equality derived here is violated by a factor of 1.522 tolerating
0.586 fraction of white noise admixture which is twice that of the previous results in the
literature. However, as in higher dimensions there are inequalities which are violated by a
stronger factor (see [8]), we expect there may exist equalities in higher dimensions as well
which are violated by a stronger factor.

Among many possible Bell-type inequalities that we derived, we could only find three
types in the form of equations (32), (33) and (34) which are violated with the same settings
used in [5, 6]. However, there are some other settings too for which these inequalities are
violated and for all of them the inequality in the form of equation (34) is violated with a
stronger factor of 1.621 tolerating 0.293 fraction of white noise admixture.
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Appendix A. Direct proof of equality (23)

For 22 ⊗ 22 case, using the definition of joint probability P in terms of q’s, i.e. equation (2),
there are 16 possible P’s which are as follows:

P 00
11 = q0000

1212 + q0001
1212 + q0100

1212 + q0101
1212

P 01
11 = q0010

1212 + q0011
1212 + q0110

1212 + q0111
1212

P 10
11 = q1000

1212 + q1001
1212 + q1100

1212 + q1101
1212

P 11
11 = q1010

1212 + q1011
1212 + q1110

1212 + q1111
1212

P 00
12 = q0000

1212 + q0010
1212 + q0100

1212 + q0110
1212

P 01
12 = q0001

1212 + q0011
1212 + q0101

1212 + q0111
1212

P 10
12 = q1000

1212 + q1010
1212 + q1100

1212 + q1110
1212

P 11
12 = q1001

1212 + q1011
1212 + q1101

1212 + q1111
1212

P 00
21 = q0000

1212 + q0001
1212 + q1000

1212 + q1001
1212

P 01
21 = q0010

1212 + q0011
1212 + q1010

1212 + q1011
1212

P 10
21 = q0100

1212 + q0101
1212 + q1100

1212 + q1101
1212

P 11
21 = q0110

1212 + q0111
1212 + q1110

1212 + q1111
1212

P 00
22 = q0000

1212 + q0010
1212 + q1000

1212 + q1010
1212

P 01
22 = q0001

1212 + q0011
1212 + q1001

1212 + q1011
1212

P 10
22 = q0100

1212 + q0110
1212 + q1100

1212 + q1110
1212

P 11
22 = q0101

1212 + q0111
1212 + q1101

1212 + q1111
1212 .
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Let us write equation (23) as

E = |E1| + |E2| (A.1)

where E1 and E2 are

E1 = P 10
11 − P 11

12 + P 11
21 + P 01

22 (A.2)

and

E2 = −P 01
11 + P 00

12 + P 01
21 + P 11

22 . (A.3)

Replacing P’s in terms of q’s we get

E1 = +q1000
1212 + q1001

1212 + q1100
1212 + q1101

1212 − q1001
1212 − q1011

1212 − q1101
1212 − q1111

1212

+ q0110
1212 + q0111

1212 + q1110
1212 + q1111

1212 + q0001
1212 + q0011

1212 + q1001
1212 + q1011

1212

= q0001
1212 + q0011

1212 + q0110
1212 + q0111

1212 + q1000
1212 + q1001

1212 + q1100
1212 + q1110

1212 ,

E2 = −q0010
1212 − q0011

1212 − q0110
1212 − q0111

1212 + q0000
1212 + q0010

1212 + q0100
1212 + q0110

1212

+ q0010
1212 + q0011

1212 + q1010
1212 + q1011

1212 + q0101
1212 + q0111

1212 + q1101
1212 + q1111

1212

= q0000
1212 + q0010

1212 + q0100
1212 + q0101

1212 + q1010
1212 + q1011

1212 + q1101
1212 + q1111

1212 .

However as q’s are all non-negative numbers, E1 = |E1| and E2 = |E2|. So, for local theories
we may write

E = |E1| + |E2|
= + q0001

1212 + q0011
1212 + q0110

1212 + q0111
1212 + q1000

1212 + q1001
1212 + q1100

1212 + q1110
1212

+ q0000
1212 + q0010

1212 + q0100
1212 + q0101

1212 + q1010
1212 + q1011

1212 + q1101
1212 + q1111

1212

= 1,

where the last equality is implied by equation (1) and this justifies equation (23).

Appendix B. Direct proof of inequality (34)

With a similar procedure used in appendix A, for inequality (34) we have

J = −P 00
11 + P 01

11 + P 10
11 + P 00

12 − P 10
12 + P 11

12 + P 01
21 − 2P 11

21 − P 00
22 + 2P 10

22

= −q0000
1212 − q0001

1212 − q0100
1212 − q0101

1212 + q0010
1212 + q0011

1212 + q0110
1212 + q0111

1212 + q1000
1212 + q1001

1212

+ q1100
1212 + q1101

1212 + q0000
1212 + q0010

1212 + q0100
1212 + q0110

1212 − q1000
1212 − q1010

1212 − q1100
1212 − q1110

1212

+ q1001
1212 + q1011

1212 + q1101
1212 + q1111

1212 + q0010
1212 + q0011

1212 + q1010
1212 + q1011

1212

− 2
(
q0110

1212 + q0111
1212 + q1110

1212 + q1111
1212

) − q0000
1212 − q0010

1212 − q1000
1212 − q1010

1212

+ 2
(
q0100

1212 + q0110
1212 + q1100

1212 + q1110
1212

)

= −(
q0000

1212 + q0001
1212 + q0101

1212 + q0111
1212 + q1000

1212 + q1010
1212 + q1110

1212 + q1111
1212

)

+ 2
(
q0010

1212 + q0011
1212 + q0100

1212 + q0110
1212 + q1001

1212 + q1011
1212 + q1100

1212 + q1101
1212

)
.

Since according to equation (1) each of the parentheses on the right-hand side of the above
equation is less than 1 and greater than 0, it is easily seen that −1 � J � 2 which is inequality
(34).
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